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(a) Volume-sampled SIP func-
tion (32MB, ∼12 min. compu-
tation) illustrated in Figure 4c.

(b) Isosurfaces of volume-
sampled SIP function (200KB,
∼12 min. computation) illus-
trated in Figure 4d.

(c) Spherically-sampled isosur-
faces of SIP function (125KB,
∼5.8 sec. computation) illus-
trated in Figure 5e.

(d) Volume representation of
spherically-sampled SIP func-
tion (900B, ∼85 ms. computa-
tion) illustrated in Figure 5f.

Figure 1: Our spherical sampling method (c & d) shows improved accuracy while significantly reducing computational runtime and memory
requirements for uncertainty visualization of HARDI glyphs compared to the existing state-of-the-art volume sampling method (a & b)
[JPGJ12]. The isosurfaces of the shape inclusion probability (SIP) function are rendered with different colors and transparency to depict
confidence intervals representing positional and orientation uncertainty of HARDI glyphs. In particular, the innermost opaque red isosurface
represents the high-confidence positions, and the translucent outermost gray isosurface denotes low-confidence positions.

Abstract
In this paper, we study uncertainty quantification and visualization of orientation distribution functions (ODF), which corre-
sponds to the diffusion profile of high angular resolution diffusion imaging (HARDI) data. The shape inclusion probability (SIP)
function is the state-of-the-art method for capturing the uncertainty of ODF ensembles. The current method of computing the
SIP function with a volumetric basis exhibits high computational and memory costs, which can be a bottleneck to integrating
uncertainty into HARDI visualization techniques and tools. We propose a novel spherical sampling framework for faster com-
putation of the SIP function with lower memory usage and increased accuracy. In particular, we propose direct extraction of
SIP isosurfaces, which represent confidence intervals indicating spatial uncertainty of HARDI glyphs, by performing spherical
sampling of ODFs. Our spherical sampling approach requires much less sampling than the state-of-the-art volume sampling
method, thus providing significantly enhanced performance, scalability, and the ability to perform implicit ray tracing. Our
experiments demonstrate that the SIP isosurfaces extracted with our spherical sampling approach can achieve up to 8164×
speedup, 37282× memory reduction, and 50.2% less SIP isosurface error compared to the classical volume sampling approach.
We demonstrate the efficacy of our methods through experiments on synthetic and human-brain HARDI datasets.

CCS Concepts
• Human-centered computing → Scientific visualization; • Computing methodologies → Uncertainty quantification; Ray
tracing; • Mathematics of computing → Probabilistic algorithms; Bootstrapping;

1. Introduction

Diffusion-weighted imaging (DWI) is a magnetic resonance imag-
ing (MRI) technique for measuring water diffusion in fibrous tis-
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sue, such as muscle and nerve cells. Fibrous tissue has anisotropic
diffusion, which can be measured along a set of gradient vectors.
Diffusion is measured by acquiring multiple DWI scans, each with
a gradient vector along which diffusion is measured. We refer to an
ensemble of 3D DWI scans as a DWI volume.

Diffusion imaging techniques typically construct approximate
models per-voxel based on ensembles of diffusion-weighted im-
ages. Many models have been developed in the pursuit of creat-
ing a compact representation to design efficient visualization al-
gorithms [ODWL19]. Diffusion tensor imaging (DTI) is a pop-
ular method for modeling diffusion with tensors, which are 3x3
symmetric matrices [BML94]. The DTI model can represent sin-
gle fiber directions, but it fails to accurately capture multiple fiber
populations with varying orientations, such as fiber crossings. High
angular resolution diffusion imaging (HARDI) modeling methods
overcome the limitation of a single prominent diffusion assump-
tion [TRW∗02]. HARDI methods typically construct orientation
distribution functions (ODFs) of the diffusion or fiber orientation
profiles. Though HARDI requires more scans, it can still be per-
formed in a clinically feasible time [TCGC04].

Quantifying and visualizing uncertainty has been regarded as the
top scientific challenge to mitigate data misrepresentation [Joh04,
JS03, BOL12]. Because model fitting provides a best-fit estimate
of the underlying DWI data, models discard the residual, which is
the modeling error. Because residuals are influenced by noise, they
provide insight into how well the model fits the measured signal.
Bootstrapping is commonly used to investigate model uncertainty
by generating samples based on residuals [CLH06, Jon08].

The shape inclusion probability (SIP) function is a state-of-the-
art mathematical tool to capture and visualize the variation of an
ensemble of ODFs or tensors, such as those generated from boot-
strapping. We discuss SIP functions in more detail in Section 3.4.
Jiao et al. [JPGJ12] compute the SIP function with a 3D structured
grid, which we call the volume sampling method [JPGJ12]. We re-
fer to the sampling grid as the sampling volume. A glyph is visual-
ized by volume rendering the measured SIP function per voxel.

Volume sampling has significant limitations concerning the per-
formance and memory footprint for quantification and visualiza-
tion. The computation of the SIP function exhibits quartic time
computational complexity, O(R3N), where R is the sampling vol-
ume’s resolution and N number of bootstrap simulations. This sam-
pling volume is costly to store on disk and in memory. The SIP
functions are typically visualized with volume rendering, which is
limited by available memory. These limitations impede the integra-
tion of SIP function analysis into HARDI visualization tools and
necessitate investigating more efficient sampling methods.

This manuscript has been authored by UT-Battelle, LLC under Con-
tract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
The publisher, by accepting the article for publication, acknowledges
that the U.S. Government retains a non-exclusive, paid up, irrevocable,
world-wide license to publish or reproduce the published form of the
manuscript, or allow others to do so, for U.S. Government purposes.
The DOE will provide public access to these results in accordance with
the DOE Public Access Plan (http://energy.gov/downloads/
doe-public-access-plan).

To address volume sampling’s storage and computational limi-
tations, we propose spherical sampling, a novel method for com-
puting the SIP distribution function with a spherical basis. Sam-
pling exhibits cubic time complexity O(Θ2N) with a sorting cost of
O(Θ2N logN), where Θ is the polar and azimuthal resolution and
N is the number of bootstrap samples. In addition to the significant
improvement in computation time, spherical sampling converges
faster and has a smaller memory footprint than volume sampling.
Additionally, we propose a novel upsampling method, which re-
duces sampling requirements and memory footprint.

We propose another novel visualization method of volume ren-
dering glyphs with implicit ray tracing, which enables continuous
and data-efficient rendering without tessellation. Recent work by
Peter et al. proposed an uncertainty glyph method. However, they
lacked a method to construct real datasets [PPUJ23]. Our volumet-
ric ray tracing glyphs are rendered using their framework.

Our contributions are summarized below.

• We propose a fast, accurate, and memory-efficient method for
evaluating ODF model uncertainty by computing the SIP func-
tion with spherical sampling.

• We extend the framework of ODF modeling to SIP isosurfaces,
which provides a compact and continuous representation of the
SIP isosurfaces that are efficiently tessellated and rendered.

• For SIP isosurfaces modeling with a spherical harmonics (SH)
basis, we introduce an implicit uncertainty glyph with multiple
volumes. Implicit ray tracing renders smooth, continuous sur-
faces without tessellation and has little memory overhead.

2. Related Work

Many HARDI ODF models have developed in pursuit of an ex-
pressive and compact basis [MD13, TRW∗02, MVYM06, Fra02,
TCGC04,MRS10,MR10,BVF08]. The ability of HARDI methods
to distinguish multiple fiber populations has aided in the detection
of pathologies, such as vision impairment [BHK∗14,BHZ∗17], im-
maturity at birth [TCR∗13], and Alzheimer’s Disease [HRC∗11].
Visualization methods typically visualize ODFs or tensors directly
as glyphs or derive prominent fiber pathways. Glyph visualiza-
tion is useful for validating tractography because tracking bias is
avoided. Unlike standard DTI glyphs [BML94, Kin04], HARDI
glyphs can disambiguate fiber crossings because the underlying
models are of sufficient complexity, such as the SH basis, described
in Section 3.2. Rendering of HARDI glyphs is typically performed
by deforming spherical meshes [PPvA∗09] or implicitly ray tracing
primitives [PPUJ23, vAPP∗11].

Tractography visualization methods [BPP∗00, WSSS14] show
likely fiber pathways by tracing streamlines through the dataset
based on model-estimated fiber directions and user-defined track-
ing parameters [BPP∗00, BHK∗14]. In addition to model error,
tractography has an additional error because directions and end-
points of fiber pathways are estimations [Cal19]. Tractography un-
certainty visualization methods mitigate fiber pathway error by
statistically analyzing streamline ensembles [BPtHRV13, SHV21,
SVBK13,OVVDW10,ESM∗05,CZCE08,MMB∗09,SG24]. How-
ever, tractography-based methods do not directly convey model un-
certainty [JJ11]. Though bootstrapping has been used with tractog-

© 2025 The Author(s).
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raphy uncertainty visualization methods, model uncertainty is ob-
scured by the streamline tracking algorithm [CADW11]. Addition-
ally, fiber tracking is influenced by user-defined parameters, which
heavily influence resulting tracts [PWP∗15, HRC∗11].

Several glyph visualization methods analyzed individual com-
ponents of model uncertainty [Jon03,AWHS16,ZCH∗17,ZSL∗16,
SSSSW13]. Some visualization methods intuitively show uncer-
tainty with an opaque glyph encompassed by a transparent glyph,
representing high and low probabilities [TCGC04,TCC07,GRT19].
Though these methods are elegant for DTI tensors, there is no ex-
tension to HARDI data, which is better suited for the disambigua-
tion of fiber crossings. Jiao et al. introduced an ODF uncertainty
glyph with various volumetric intervals [JPGJ12]. They render in-
tervals from the Shape Inclusion Probability(SIP) [LP08] function
using volume rendering, which is inefficient concerning both time
and memory. We propose a novel sampling strategy and data format
to improve performance, memory usage, and accuracy.

Recent work by Peter et al. introduced an uncertainty glyph that
renders an opaque glyph encompassed by one volumetric interval
using implicit ray tracing of spherical harmonics [PPUJ23]. Their
uncertainty rendering technique is promising. However, they state
that there is no existing method to compute real uncertainty data for
their method. We propose modeling SIP interval boundaries, which
can utilize Peter et al.’s uncertainty glyph. Additionally, we extend
their method to visualize multiple volume intervals, similar to Jiao
et al.’s method [JPGJ12].

3. Background

This section covers the process of quantifying ODF uncertainty for
SIP functions [JPGJ12], which is illustrated in Figure 2. Per-voxel
ODF models are estimated and represented in the spherical har-
monics basis. Bootstrapping is applied to generate an ensemble of
models that convey residual-based uncertainty. Then, the shape in-
clusion probability function is estimated from the bootstrap ensem-
ble.

3.1. Model Fitting

Modeling is a form of approximation with a set of continuous, para-
metric basis functions, which is illustrated in Figure 2b. Figure 2a
shows the discrete ODF, which is mapped to a basis. The mapping
is defined as K(S) = A where the DWI signal S = [S1,S2, . . . ,SG],
basis function coefficients A = [A1,A2, . . . ,A jmax ], and jmax is the
total number of coefficients. Because the SIP function is model-
agnostic [JPGJ12], any spherical ODF model

Ψ(⃗V ,A) =
jmax

∑
j=0

A jPj (⃗V ) (1)

is defined as a summation of basis functions Pj, where j ∈
[1, . . . , jmax], for any given vector V⃗ = [θ,φ] where θ∈ [0,π] and φ∈
[0,2π]. Any solution of Ψ must be unique, such that the ODF shape
has no holes. We define a corresponding inversion K−1(A) = Ŝ as
the model-based diffusion signal prediction Ŝ = [Ŝ1, Ŝ2, . . . , ŜG].

Within the HARDI framework, there are multiple techniques to

Volume  Sampling 
Pipeline (Figure 4)

Spherical Sampling 
Pipeline (Figure 5)

Compute Residuals
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Figure 2: Overview of the pipeline for encoding model uncertainty
as an ODF ensemble. The discrete ODF (a) is measured along each
gradient vector, which is then modeled (b) using a continuous ba-
sis. The model error is quantified by the residual (c), which is the
difference of the discrete ODF and the model’s prediction. Boot-
strapping creates an ensemble of ODF models (d) based on the
residual.

model the orientation distribution functions (ODFs). Though spher-
ical sampling works for any ODF, we utilize fiber orientation dis-
tribution functions (fODFs) derived from constrained spherical de-
convolution (CSD) in our experiments. CSD derives the fODF by
deconvolving a diffusion orientation distribution function (dODF)
[ALS∗10] with a response kernel and uses a positivity constraint
because negative fibers are physically impossible [TCC07].

3.2. Spherical Harmonics

A common HARDI modeling basis, spherical harmonics (SH),
is a set of Laplacian eigenfunctions in spherical coordinates
[vAPP∗11]. An SH basis function is defined as P(⃗V ) = Y m

l (⃗V )
where l is the degree and m is the order. Figure 3 shows some
shapes of individual basis functions. The SH basis

ΨSH (⃗V ,B) =
lmax

∑
l=0

l

∑
m=−l

Bm
l Y m

l (⃗V ) (2)

is a specific implementation of a generic spherical basis (Equation
1) where B is a set of coefficients.

Because of the truncation of the SH basis, it is a low pass ap-
proximation. The parameter lmax denotes the largest degree l for
a truncated SH basis. Because diffusion is symmetric and odd l
bands correspond to asymmetry, even l bands are exclusively used.
For simplicity, Bm

l and Y m
l can be redefined with a single coefficient

parameter. We define jmax = (lmax +2)(lmax +1)/2 such that

ΨSH (⃗V ,B) =
jmax

∑
j=0

B jY j (⃗V ) (3)

is a linear redefinition of Equation 2. This redefinition is for con-
venience as it allows the expression of coefficients B in terms of a
single array.

© 2025 The Author(s).
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Figure 3: Table of real spherical harmonics basis up to degree
l = 3 [Qui14]. The complexity of the basis increases as l increases.
Truncation with higher lmax can model more prominent ODF direc-
tions and separate smaller angles between them. The blue compo-
nents are positive and the yellow components are negative.

3.3. Bootstrapping

Analysis and visualization methods only utilizing the initial ODF
model Ψ ignore the uncertainty r associated with model fitting.
Acquiring redundant scans would be ideal for investigating un-
certainty but would be too costly and time-consuming. Therefore,
ensemble-based methods resort to statistical analysis to generate
sample simulations.

Bootstrapping is a model-agnostic technique to simulate mul-
tiple data acquisitions by random residual-based perturbations, as
shown in Figure 2d. Two common bootstrapping methods for dif-
fusion imaging are residual bootstrapping and wild bootstrapping
[CLH06,Jon08]. Both methods are based on the residual, r = Ŝ−S,
which is the difference between the measured signal S and pre-
dicted signal Ŝ. The perturbation for residual bootstrapping is de-
termined by random sampling from a pool of all values of r. For
wild bootstrapping, the residual is randomly added or subtracted to
the measured signal with equal probability. Wild bootstrapping is
ideal for SIP functions because it preserves the magnitude of noise
variance per vector [JPGJ12].

Wild bootstrapping generates an ODF ensemble for SIP func-
tion analysis. Each bootstrap ODF is derived as a set of bootstrap
signal coefficients S∗ = [S∗1 ,S

∗
2 , . . . ,S

∗
N ], where S∗n ∈ Ŝ± r and n ∈

[1, . . . ,N]. The bootstrap ensemble is defined as a set of correspond-
ing basis function coefficients A∗ = [K(S∗1 ),K(S∗2 ), . . . ,K(S∗N)].
The mapping of S∗n to a basis function coefficients is K(S∗n ), which
is defined in Section 3.1.

3.4. Shape Inclusion Probability

The shape inclusion probability (SIP) function is a powerful sta-
tistical tool to analyze shape variation of shape ensembles [LP08].
Jiao et al. investigated the uncertainty of HARDI modeling by ana-
lyzing SIP functions of bootstrap ODF ensembles [JPGJ12]. The
SIP value at a given point is the fraction of the encompassing
shapes, which we also denote as a percentage. If a point p is in-
side m shapes or bootstrap samples of an ODF ensemble, then the
SIP value for the point p is estimated as m

N , where N is the number
of bootstrap samples. Though the SIP function is model-agnostic,

we utilize ΨSH for the experiments in this paper. Jiao et al. show
examples of the SIP function applied to ellpisoid and superquadric
tensor glyphs [JPGJ12]. The SIP function

υ(p) = 1/N
N

∑
n=0

{
0 if |p|> Ψ( p

|p| ,An)

1 if |p| ≤ Ψ( p
|p| ,An)

(4)

is a discrete value υ(p) ∈ [0,1/N,2/N, . . . ,1] for an ensemble of N
ODF shapes for a point p ∈ R3. The distance of the point from the
origin, |p|, is compared against the distance to the ODF model’s
surface.

Volume Sampling 

Measures shapes (brown) 
at points (yellow) 

a

Volume Rendering
c

Directly 
shows SIP 

volume

d
Triangle Mesh Rendering

Isosurfaces 
are SIP 

intervals

 Marching Cubes
b

Computes 
isosurfaces from 

SIP volume

Volume  Sampling 
Pipeline

Spherical
Sampling 
Pipeline

(Figure 5)

Uncertainty Ensemble 
Generation (Figure 2)

Figure 4: Overview of the volume sampling [JPGJ12] pipeline for
computing and visualizing the SIP function. Volume sampling gen-
erates a cubic volume (a) that can be directly volume rendered (c).
Isosurfaces can be rendered as triangle meshes (d) by computing
marching cubes (b) [LC87].

Jiao et al. calculate the SIP function at all nodes of a 3D struc-
tured volume, which we refer to as the volume sampling method,
as illustrated in Figure 4a [JPGJ12]. For volume sampling, the SIP
value is computed per voxel. Therefore, given a sampling volume
of resolution R x R x R, the computational cost of volume sampling
is O(R3N) per DWI voxel. The high computational and memory
cost of volume sampling inhibits integration into HARDI visual-
ization tools. Jiao et al. demonstrate that volume rendering can be
directly performed on the SIP function volume [JPGJ12], as shown
in Figure 4c and visualized in Figure 1a for a single DWI voxel.
However, volume rendering is expensive and requires a lot of mem-
ory. An alternative approach is to compute the isosurfaces of the
SIP function using marching cubes [LC87], as shown in Figure 4b.
These SIP isosurfaces can be rendered as triangle-based meshes, as
shown in Figure 4d and visualized in Figure 1b. The isovalues of
a SIP isosurface represent the boundaries of its corresponding SIP
values. For example, an isosurface with an isovalue of 0.95 would
represent the boundary of 95% of the bootstrap shapes. Though this
improves rendering performance and storage cost, the slow compu-
tation time of the initial volume sampling is still required.

We greatly improve the speed and memory usage for computing
the SIP function with our novel approach, spherical sampling, as

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
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described in Section 4. By exploiting the properties of HARDI en-
sembles, the cost of spherical sampling is O(Θ2N) with a sorting
complexity of O(Θ2N logN), where Θ is the polar and azimuthal
resolution and N is the number of bootstrap samples. The additional
cost of scaling SIP computation to HARDI datasets is discussed in
Section 5.

4. Method

4.1. Sampling Sphere

The SIP function can be computed more efficiently with spherical
sampling than volume sampling because an ensemble of spherical
ODFs maps directly to a spherical basis. Similarly to DWI gradi-
ent schemes, the electrostatic repulsion model can determine effi-
cient ODF sampling directions [JHS99]. The simulation of repul-
sive forces generates a vector set with an evenly spaced distribu-
tion. Electrostatic repulsion is an iterative procedure, as there is no
perfect solution for all vector sets of size M. Additionally, only a
hemisphere needs to be sampled because it is equivalent to a spher-
ical basis due to the symmetric properties of DWI measurements.

Spherical sampling is performed by computing and sorting each
surface vertex along a sampling vector for every bootstrap ODF.
We define a spherical sampling basis as a set of M ODF sam-
pling directions C= [C⃗1,C⃗2, . . . ,C⃗M ]. The surface vertex of an ODF
Ψ(C⃗m,A∗

n ) is evaluated per sampling direction C⃗m = [θm,φm] for
each bootstrap sample A∗

n , where m ∈ [1, . . . ,M]. We discuss the
choice of M in Sections 5.3-5.5 and 5.6.

Uncertainty Ensemble 
Generation (Figure 2)
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Figure 5: Overview of the proposed spherical sampling pipeline
for computing and visualizing the SIP function. Iso-levels of the
SIP function are computed using spherical sampling (a). Extracted
isosurfaces (b) can be directly visualized (e). Models of SIP isosur-
faces (c) can be visualized with volume ray tracing (f). SIP isosur-
faces can also be upsampled (d) and visualized as triangle meshes
(g). Only a single SIP isosurface is depicted (b-d).

4.2. Isosurface Extraction with Spherical Sampling

Spherical sampling enables fast and accurate evaluation of the SIP
isosurfaces by exploiting the property that spherical functions have
a unique solution for every spherical coordinate. Whereas volume

Shape 1

Shape 2

Shape 3

(a) Spherical sampling of three
ODFs. Each ODF’s surface is a
continuous shape in a basis Ψ.

100% SIP

  67% SIP

  33% SIP

(b) Isosurface extraction. Lines be-
tween intersection vertices represent
tessellation.

0 1 2 3 4 5 6

Sh
ap

es

1

2

3

SI
P

1
3

2
3

1 33% SIP

67% SIP

100% SIP

Intersection of Shapes and 
Sampling Vector

Distance from Origin

(c) Measurement of a SIP function along a sampling
vector (C⃗m). The SIP function is an inverse cumulative
distribution function of the shapes’ positions.

Figure 6: Spherical sampling and isosurface extraction of three
ODFs. The ODFs’ surface vertices correspond to isolevels of the
SIP function, which is shown along a sampling direction C⃗m, where
the dots are the vertices Ψ(C⃗m,A∗

n ) of the ODF shapes.

sampling evaluates one SIP value per point, spherical sampling
computes all N iso-levels of a SIP function along a sampling vec-
tor. Because all ODF shapes reside at a common origin and expand
outwards to their boundaries, a SIP function along a sampling di-
rection is guaranteed to be an inverse cumulative distribution func-
tion, as shown in Figure 6c. For each sampling direction C⃗m, the
discrete boundaries of the SIP values are evaluated by computing
and sorting the corresponding bootstrap samples’ surface offsets,
Tm = [Ψ(C⃗m,A∗

1 ),Ψ(C⃗m,A∗
2 ), . . . ,Ψ(C⃗m,A∗

N)] (see Eq. 1). Because
the SIP function along the sampling direction has probability val-
ues in the range [0,1], the sorted array Tm corresponds to the or-
dered probability boundaries [1, . . . ,2/N,1/N]. Figure 6a shows an
example where an unordered Tm is calculated for N = 3 bootstrap
samples.

Once all probability boundaries along a sampling direction are
computed and sorted, the probability boundaries of interest can
then be efficiently extracted, as shown in Figures 5b and 6b. A
SIP isosurface of the probability x is defined as a set of surface
offsets H(x) = [T1,x,T2,x, . . . ,TM,x]. We define U isosurfaces of in-
terest as I = [H(x1),H(x2), . . . ,H(xU )]. Each user-defined SIP iso-
surface H(xu), where u ∈ [1, . . . ,U ], can be efficiently determined
by accessing the sorted array Tm with a corresponding index value

d(x,N) = x∗N (5)

For this definition, index values are assumed to start at one. For

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
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example, the x = 0.95 isosurface of the SIP function of N = 1000
bootstrap samples will be at index d = 950. Additionally, if d is a
decimal value, the isosurface can be approximated with interpola-
tion. However, in practice, interpolation can easily be avoided by
choosing easily divisible values of x and N.

50° 60° 70° 80°

Figure 7: A set of SIP isosurfaces evaluated with spherical sam-
pling. This method has little error representing a discrete ensemble,
which are modeled in a SH basis ΨSH with lmax = 4 and M=6,274
samples. More examples with varying angles are shown below.

Spherical sampling produces accurate SIP isosurfaces because
isosurface vertices are computed directly when d is an integer
value. Direct SIP isosurface rendering is shown in Figure 5e.
Though sampling requirements are high for adequate tessellation,
spherical sampling is significantly faster with less data overhead
than volume sampling. The faster convergence of this approach is
demonstrated in Section 5.3. In Figures 1c and 7, each SIP isosur-
face is computed and visualized with M = 6,274 spherical sam-
pling directions, where modeling was performed with CSD in the
SH basis.

4.3. Modeling SIP Isosurfaces

Fitting a model to a SIP isosurface allows efficient upsampling and
implicit volume rendering. Modeling is the process of representing
a surface as a set of continuous functions. Upsampling SIP isosur-
faces allows faster creation of higher resolution polygon meshes.
Implicitly volume-rendered glyphs are beneficial because they con-
vey the density of intervals as opacity and do not have the addi-
tional error and computational cost from tessellation. We apply the
same modeling algorithms for DWI measurements to SIP isosur-
face vertices, as shown in Figure 5c. Modeling of a SIP isosurface
A′

u = K(H(xu)) is represented as coefficients in terms of a basis
Ψ

′ (Equation 1), which provides compact and continuous repre-
sentation at the cost of some accuracy. The basis for modeling SIP
isosurfaces, Ψ

′, can be independent of the initial modeling basis Ψ.
The number of sampling directions, M, is much less for modeling
than direct isosurface visualization.

Sampling vectors C must be carefully chosen to maximize the

50° 60° 70° 80°

Figure 8: A set of low-resolution SIP isosurfaces evaluated with
spherical sampling for upsampling and ray tracing. The ensemble
is modeled in a SH basis ΨSH with lmax = 4 and M = 100 sampling
directions. More examples with varying angles are shown below.

usefulness of each vector’s contribution. We utilize the electrostatic
repulsion model to choose sampling vectors that are evenly dis-
tributed, which is an established method for choosing DWI vec-
tors [JHS99]. Figure 8 shows the low-resolution SIP isosurfaces
H(xu) used for modeling. Each isosurface in the figure is a dis-
crete mesh with 100 spherical sampling directions, where the initial
model was approximated with CSD in a SH basis with lmax = 4.
To minimize error, the SIP function model’s complexity, denoted
by l′max, should be greater than or equal to the bootstrap ensemble
complexity, lmax. We discuss this in Section 5.6.

4.4. Upsampling SIP Isosurfaces

Upsampling a SIP isosurface from a model Ψ
′ is much cheaper than

extraction from spherical sampling(Section 4.2). Upsampling is the
process of converting a low-resolution dataset to a high-resolution
one by interpolation. The preliminary step of low-resolution sam-
pling and modeling of SIP isosurfaces is described in Section
4.3. Tessellation of SIP isosurface models is illustrated in Figure
5d, which is directly rendered as triangle-based meshes in Fig-
ure 5g. A higher resolution mesh representation can be computed
from evaluating the SIP isosurface models with a modeling basis
Ψ

′(C⃗′
m,A

′
u) at spherical sampling directions C′ = [C⃗′

1,C⃗
′
1, . . . ,C⃗

′
M′ ],

where M′ > M. The number of ODF model evaluations for the SIP
computation is N ∗M, where N is the number of bootstrap samples
and M is the number of sampling directions. In contrast, the number
of model evaluations for computing SIP isosurfaces is U ∗M′. Typ-
ically, the number of SIP isosurfaces of interest, U is significantly
lower than N, resulting in much faster tessellation.

Upsampling creates a smoother, more aesthetically pleasing im-
age at a lower computational cost. Because this approach is a form
of approximation, there will be some error depending on the choice
of parameters, as presented in our results in Section 5.6. In Figure
9, the SIP function is evaluated with M = 100 sampling directions,
all five SIP isosurfaces are modeled, and then the new isosurfaces

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 14678659, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.70138 by U

niversity O
f U

tah, W
iley O

nline L
ibrary on [06/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



T. Patel, T. M. Athawale, T. A. J. Ouermi & C. R. Johnson / Fast HARDI Uncertainty Quantification and Visualization with Spherical Sampling 7 of 12

50° 60° 70° 80°

Figure 9: Upsampling SIP isosurfaces from SH models. Models of
SIP isosurfaces can be efficiently tessellated and provide smoother
representation. The ODF ensemble is modeled in a SH basis ΨSH
of lmax = 4 with M = 100 sampling directions. SIP isosurfaces are
modeled in a SH basis Ψ

′
SH of l′max = 8 with M′ = 6,274 sampling

directions. More examples with varying angles are shown below.

are tessellated from the SIP isosurface models with M′ = 6,274
sampling directions. The number of sampling directions used to
compute the SIP function is equivalent to Figure 8, while the iso-
surface resolution is equivalent to Figure 7.

4.5. Implicitly Rendered SIP Glyph using SH Ray Tracing

Additionally, modeling SIP isosurfaces with a continuous basis Ψ
′

enables implicit ray tracing. For SIP glyph visualization, implicit
rendering reduces data overhead by eliminating the need for tessel-
lation while rendering a continuously smooth shape, as shown in
Figure 5f. Rendering of transparent surfaces and volumes requires
multiple intersections to be computed per isosurface, which is si-
multaneously computed by ray tracing of implicit shapes in the SH
basis ΨSH [PPUJ23]. Peters et al. introduced a fast implicit SH
ray tracing method and an extension for uncertainty visualization
by rendering uncertain regions as transparent surfaces or volumes.
However, Peter et al.’s uncertainty visualization method lacks a
pipeline for computing the necessary uncertainty data. Modeling of
SIP isosurfaces, as described in Section 4.3, provides the missing
computation method for their implicit uncertainty glyphs.

We apply Peter et al.’s uncertainty glyph rendering technique to
SIP functions. In comparison, we visualize the SIP function with
multiple transparent volumes. To prevent smaller, more certain vol-
umes from being occluded, we assign lower opacity values to the
larger, less certain volumes. The volumetric transmittance is de-
fined as exp(−σd) where σ > 0 is a user-defined extinction pa-
rameter, and d ≥ 0 is the distance the ray has traveled through
the volume. To adjust each volumetric region’s opacity individu-
ally, we assign different σ values per volume. Figures 1d and 10
show an example of this uncertainty glyph with four volumetric re-
gions where σ increases with each subsequent region. The implicit

50° 60° 70° 80°

Figure 10: Implicit ray tracing of a volumetric SIP glyph allows for
fast sampling and provides smooth representation without needing
tessellation. The SIP isosurfaces are modeled in a SH Basis ΨSH of
l′max = 8 with M = 100 sampling directions. The volume extinction
values are σ(Outer to Inner)= [1.8,2.5,3.5] with an opaque inner-
most surface. More examples with varying angles are shown below.

rendering of the uncertainty glyphs was performed with Intel OS-
PRay [WJA∗17] using a custom geometry module and renderer.

5. Results and Discussion

5.1. Synthetic Data

To evaluate the SIP isosurface accuracy, we construct synthetic data
using the tensor multi-compartment model [TRW∗02]. This syn-
thetic dataset is used in Figures 1, 7-10, and 12. Since the primary
goal of HARDI research is to distinguish multiple fibers, we simu-
late data with two crossing fibers with varying angles. For both ten-
sors, we simulate eigenvalues [λ1,λ2,λ3] = [1900,100,100]∗10−6

mm2/s [Des08]. We use a b-value of 2000 s/mm2 with an signal-to-
noise ratio (SNR) of ten. The b-values denote the gradient strength
and duration of an MR field. Because the choice of SNR and b-
value affects the SIP function, we chose a common b-value for
HARDI. We chose a high noise value, SNR of five, to make
confidence intervals larger for inspection. Jiao et al. further de-
tail how a variation of b-values and SNR values affect SIP func-
tions [JPGJ12]. For modeling, we used a response function with
the same eigenvalues as the input tensors. While the response func-
tion is typically computed from the most linear voxels of a dataset,
the response function of our synthetic example is known.

5.2. Human-Brain Data

The main benefit of the spherical sampling approach is that the ef-
ficiency of evaluating SIP functions υ is viable for application to
larger datasets. We show this by applying it to Stanford’s human-
brain HARDI dataset [RYP∗15], which has a DWI volume reso-
lution of 81x106x76. The scanner was a 3T GE Discovery MRI
system. The data used from the study measured 10 non-diffusion
weighted images (b0) and 150 images diffusion weighted with a

© 2025 The Author(s).
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b-value of 2000 s/mm2. The b-value is a measure of the degree of
diffusion-weighting. Non-diffusion weighted images (b0) are ac-
quired as a baseline for diffusion measurements. Figure 11 shows
an entire transverse slice of the Stanford dataset visualized with
SIP isosurface glyphs. The initial modeling K(S) = A in the SH
basis ΨSH with lmax = 4 is performed with the diffusion analysis
library, Dipy [GBA∗14]. The SIP functions υ are evaluated with
N = 1000 bootstrap samples (Section 3.3) and M = 100 sampling
vectors (Section 4.1) to extract U = 5 isosurface of interest, where
each individual isosurface is defined as H(xu). We then model
each SIP isosurface (Sections 4.2-4.3) by mapping to the SH ba-
sis as A′

u = K(H(xu)). The model is subsequently tessellated with
M′ = 500 vectors (Section 4.4).

Figure 11: A slice of the Stanford HARDI dataset with glyphs of
SIP isosurfaces intuitively shows ODF model uncertainty. The en-
semble is modeled in a SH basis ΨSH of lmax = 4 and sampled with
M = 100 directions. The SIP isosurfaces were modeled in a SH
basis Ψ

′
SH of l′max = 8 and tessellated with M′ = 1000 directions.

5.3. Accuracy

Spherical sampling converges faster than volume sampling. We de-
fine the SIP isosurface error as x− υ(p), which is the difference
between the representative iso-level x and the expected SIP value
υ(p) (Equation 4) at point p on the SIP isosurface. We measure
the errors at isosurface vertices and sampled points on the iso-
surfaces. Because spherical sampling directly computes probabil-
ity boundaries, the SIP isosurface error at the vertices is very low.
Consequently, SIP isosurface error quickly converges to zero as
the isosurface resolution increases, as shown in Figure 12. The er-
ror is computed from 35 seeds. Though more seeds would have
been ideal, the computation time of volume sampling constrained
how many were feasible to analyze. However, each measurement
is evaluated from 1000 measurements for each of the 10 different
iso-levels per seed. Additionally, computing a predicted iso-level x
from a SIP volume requires first extracting SIP isosurfaces with an

isosurface technique such as marching cubes [LC87]. Because im-
plicitly rendered glyphs (Section 4.5) don’t apply tessellation, the
SIP isosurface error is only introduced from modeling, which is de-
scribed in Section 5.6. Upsampled glyphs (Section 4.4) introduce
errors from both tessellation and modeling.
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Figure 12: The SIP error for our spherical sampling method (red)
converges faster than volume sampling (blue) with regards to reso-
lutions (a & b) and number of computations (c). The shaded region
represents a 95% confidence interval. The results are an average
of iso-levels ranging from 0 to 1 with increments of 0.05. The test
data is described in Section 5.1. Results were computed from 35
randomization seeds for computing bootstrap samples.

n+1 SIP
N

isosurface
vertices
precision

error

  n SIP
N

n-1 SIP
N

Figure 13: Illustration of the magnitude of SIP isosurface error
with spherical sampling. For a SIP isosurface of isovalue n

N , the
SIP isosurface error is on the scale of precision error. In our ex-
periments, the error is less than 1e−12. The SIP value of a point
evaluates to n

N (blue) or n+1
N (red) depending on the precision er-

ror. The SIP isosurface vertices are red. The shaded area marks the
precision error.

Spherical sampling exhibits minimal SIP isosurface error at ver-
tices because those vertices lie on the corresponding probability
boundary, as illustrated in Figure 13. Because the iso-level calcula-
tion is inaccurate by an order of machine precision, the measured
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SIP isosurface error will be either zero or 1/N. Volume sampling
evaluates SIP values at the center of voxels, which are not likely
to correspond to iso-levels. Figure 12a shows this relationship by
measuring the SIP isosurface error of both methods at isosurface
vertices. The error from modeling is discussed in Section 5.6.

Measuring SIP isosurface error at sampled isosurface points also
demonstrates better accuracy with spherical sampling. Though the
SIP isosurface error at the vertices is near zero for spherical sam-
pling, the error of a point sampled on the isosurface depends on
the resolution because tessellation is a form of linear interpolation
between vertices. As resolution increases, the SIP isosurface error
converges to zero. The average error of the isosurface is measured
by Monte Carlo integration of random points that lie on the isosur-
face. Though both volume and spherical sampling converge as their
resolution increases, spherical sampling converges more rapidly.
Figure 12b shows the change in error as resolution increases with
regards to isosurface resolution. Figure 12c shows the difference in
the convergence rate regarding the number of SIP computations.

Though spherical sampling reduces the SIP isosurface error, it
is independent the SIP error introduced by Jiao et al. [JPGJ12].
The SIP error is determined by the basis complexity and number
of bootstrap samples. Jiao et al. define the maximum SIP error as√
(1/2N)(ν+ ln(1/δ)) with probability 1−δ for N bootstrap sam-

ples where ν is the number of SH basis coefficients. In Figure 12,
the data is generated with N = 1000 bootstrap samples and ν = 15,
which results in 99% of all SIP function samples having at most
10% error. Jiao et al. state that this error will be much less for most
samples [JPGJ12]. In contrast to the SIP isosurface error measured
in Figure 12b, volume sampling of resolution 200 can have a mean
error of 8.1% and the 95% confidence interval can be up to 30.8%.
In comparison, spherical sampling with 1570 and 6274 sampling
vectors resulted in a mean error of 1.1% and 0.3% and a 95% con-
fidence interval of 3.1% and 0.8% respectively. In our experiments,
the error from spherical sampling was less than the SIP error result-
ing from limited bootstrap samples, unlike volume sampling.

5.4. Speed

Spherical sampling exhibits a much faster computation time than
the state-of-the-art volume sampling approach. Volume sampling
exhibits quartic O(R3N) complexity, where R is the resolution of
sampling volume and N is the number of bootstrap samples. In
volume sampling, each voxel of the sampling volume must eval-
uate the distance from the origin to the isosurface vertices of all
N bootstrap samples. The key insight to improving performance
is that evaluating N bootstrap samples provides N iso-levels along
all directions. Whereas volume sampling only records the percent-
age of encompassing shapes at a single point, spherical sampling
records all N iso-levels along a vector. For spherical sampling, the
volume resolution R x R x R is replaced with the polar and az-
imuthal resolution of the sampling sphere, Θ x Θ, which would re-
sult in a complexity of O(Θ2N). In our experiments, we sort arrays
with the Timsort algorithm [Pet02] which has a time complexity of
O(Θ2N logN). For a set of M sampling vectors, the angular resolu-
tion Θ can be approximated as Θ ≈

√
M.

Table 1 shows the compute time of the volume and spherical

lmax = 4, N = 1000 Compute Time Compute Time
per Voxel per Slice (81,106)

Volume
Sampling(R = 100) 2 min 1 sec 12.02 days (estimate)

Volume
Sampling(R = 200) 11 min 34 sec 68.97 days(estimate)

Direct SIP Isosurface
(M = 500) 114 ms 12 min 10 sec

Direct SIP Isosurface
(M = 1000) 215 ms 24 min 20 sec

Upsampled SIP
Isosurface (l′max = 4, 31 ms 4 min 30 sec
M = 60,M′ = 1000)

Upsampled SIP
Isosurface (l′max = 8, 85 ms 13 min 17 sec
M = 100,M′ = 1000)

Table 1: Superior computational performance of our spherical
sampling method over volume sampling. Spherical sampling is
used for direct computed SIP isosurfaces (Section 4.2) shown in
orange and the upsampling method (Section 4.4) shown in pink.
The dataset used is a slice of the Stanford HARDI brain data (Sec-
tion 5.2).

sampling methods, with and without upsampling. Direct SIP isosur-
face extraction with M = 1000 is 3228× faster than volume sam-
pling with R = 200. Upsampling SIP isosurfaces with the SH basis
Ψ

′
SH provides additional performance. The upsampled SIP isosur-

faces of similar resolution with l′max = 8, M = 100, and M′ = 1000
are 8164× faster than volume sampling with R = 200. All the mea-
surements are performed on an Intel i9-12900K CPU with 128GB
RAM with a multi-threaded Python script using the diffusion anal-
ysis library, Dipy [GBA∗14]. Only generating bootstrap samples
and evaluating the SIP function is measured because the cost of
generating bootstrap samples is consistent between all methods.

The spherical sampling method drastically reduces the computa-
tion time over volume sampling in our experiments. Our upsam-
pling method provides an additional performance improvement.
The main benefit is making it feasible to compute whole slices of
real data. This increase in speed could make SIP function compu-
tation more viable in clinical applications where time is limited.

5.5. Memory

The memory constraints of volume sampling previously limited the
applicability of analyzing SIP functions of real HARDI datasets.
Table 2 shows the volume and spherical sampling’s memory re-
quirements. Compared to a volume of R = 200, a polygon mesh of
M = 1000 reduces the storage size by 1638× and a SH model of
l′max = 8 reduces the storage size by 37282×. With spherical sam-
pling, the memory scales by the number of isosurfaces P, whereas
the volume sampling method stores an entire volume of isovalues
per DWI voxel. The full memory profile of volume sampling is un-
necessary because visualizing over eight confidence intervals is not
useful [JPGJ12]. Although SIP isosurfaces can be extracted from
the volume sampling approach by marching cubes [LC87], accu-
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racy and speed are still worse than the spherical sampling method.
We discuss these differences further in Sections 5.3 and 5.4.

SIP Interval Single Slice of Stanford
Modeling Voxel Data (81,106)

Volume(1003) 4MB 33.54 GB
Volume(2003) 32MB 268.31 GB

Polygon Mesh(M=500) 10 KB 83.8 MB
Polygon Mesh(M=1,000) 20 KB 167.7 MB

Polygon Mesh(M=10,000) 200 KB 1.68 GB
SH Basis l′max = 4 300 B 2.58 MB
SH Basis l′max = 8 900 B 7.75 MB

SH Basis l′max = 12 1.82 KB 15.65 MB

Table 2: The memory overhead is greatly reduced with spheri-
cal sampling methods. Modeling of SIP isosurfaces with spherical
harmonics (SH) provides additional storage reduction. Five isosur-
faces are computed for polygon meshes and SH models. Gray is
volume sampling (Section 3.4) and orange is the tessellated SIP
isosurfaces of spherical sampling (Sections 4.2 and 4.4), and the
purple is SH modeling of SIP isosurfaces (Sections 4.3 and 4.5).
The data sets are described in Sections 5.1 and 5.2. l′max is the de-
gree of complexity of the SH basis ΨSH .

The representation of SIP functions as cubic volumes has a high
storage cost, making it difficult to store in the limited RAM of desk-
top computers. We showed that this limitation can be overcome
by representing SIP isosurfaces as polygon meshes. An additional
storage reduction is achieved by modeling with the SH basis.

5.6. Relationship of SH Degree and Sampling Sphere
Resolution

(a) lmax = 4 (b) lmax = 8 (c) lmax = 12

Figure 14: Higher maximum SH degree (lmax) values can discern
smaller fiber angles. The ensemble is modeled with varying lmax
degrees to show the consequent angle separations. SIP functions of
higher ensemble lmax are computed with more bootstrap samples.

Computing SIP functions of ODF ensembles of higher SH de-
gree results in better fiber angle separation. Figure 14 shows the
improved angle separation when the SH degree lmax increases.
More bootstrap samples are simulated to use higher SH degrees
[JPGJ12], so N = 5000 bootstrap samples are used in Figure 14.

Increasing the SH degree of the bootstrap models requires in-
creasing the SH degree of the SIP isosurface models and the num-
ber of sampling vectors. This relationship is shown in Figure 15,
where the SIP isosurface error decreases as the number of sampling

(a) Model lmax = 6 (b) Model lmax = 8

Figure 15: The SIP isosurface error decreases as the number
of ODF sampling vectors increases. The error of SIP isosurface
modeling achieves lower minimum error when the SIP isosurface
model’s complexity l′max is greater than or equal to the bootstrap
samples’ complexity lmax. However, higher l′max requires more sam-
pling directions to converge. Black lines are where l′max = lmax, red
lines are where l′max < lmax, and green lines are where l′max > lmax.

vectors increases. The SIP isosurface error is measured at isosur-
face vertices to exclude the error introduced from tessellation. The
error is significant when the SIP isosurface model’s SH degree l′max
is less than the bootstrap samples’ SH degree lmax because the SIP
isosurface model has fewer degrees of freedom than the models it
represents. As shown in Figure 15a, a SIP isosurface represented
with a SH basis of l′max = 4 for initial models represented with
lmax = 6 maintains higher SIP isosurface error. Similarly, in Fig-
ure 15b, the SIP isosurface error is higher when modeled with a SH
basis of l′max = 4 and l′max = 6 for initial models represented with
lmax = 8. Therefore, SIP isosurface models should have equal or
greater degrees of freedom than the model for ODF ensembles.

6. Conclusion and Future Work
Our novel spherical sampling method addresses the performance
limitations of the volume sampling method [JPGJ12] by comput-
ing SIP functions in a fast, accurate, and memory-efficient manner.
In our experiments, SIP isosurfaces extracted and upsampled with
our spherical sampling approach achieved up to 8164× speedup,
37282× memory reduction, and 50.2% less SIP isosurface error
compared to the volume sampling method.

Though we primarily showcase SIP isosurface modeling for un-
certainty glyph visualization, SIP functions may find utility in in-
forming decisions of choosing paths for uncertainty-based tractog-
raphy. The isosurfaces of the SIP function could also be used to
derive novel statistical scalar invariants. Extending interpolation
techniques to SIP functions is yet to be explored, which is inte-
gral to tractography and glyph placement strategies. Uncertainty
analysis of the SIP function could be useful in studying the im-
pact of scanner acquisition techniques. In addition, GPU hardware
could be utilized to improve performance for quickly processing
entire data sets or increasing resolution. Fast SIP function analysis
enables many new avenues of HARDI uncertainty exploration.
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